French Social Media Mining: Expertise and Sentiment
نویسندگان
چکیده
Social Media has changed the way we communicate between individuals, within organizations and communities. The availability of these social data opens new opportunities to understand and influence the user behavior. Therefore, Social Media Mining is experiencing a growing interest in various scientific and economic circles. In this thesis, we are specifically interested in the users of these networks whom we try to characterize in two ways: (i) their expertise and their reputations and (ii) the sentiments they express. Conventionally, social data is often mined according to its network structure. However, the textual content of the exchanged messages may reveal additional knowledge that can not be known through the analysis of the structure. Until recently, the majority of work done for the analysis of the textual content was proposed for English. The originality of this thesis is to develop methods and resources based on the textual content of the messages for French Social Media Mining. In the first axis, we initially suggest to predict the user expertise. For this, we used forums that recruit health experts to learn classification models that serve to identify messages posted by experts in any other health forum. We demonstrate that models learned on appropriate forums can be used effectively on other forums. Then, in a second step, we focus on the user reputation in these forums. The idea is to seek expressions of trust and distrust expressed in the textual content of the exchanged messages, to search the recipients of these messages and use this information to deduce users’ reputation. We propose a new reputation measure that weighs the score of each response by the reputation of its author. Automatic and manual evaluations have demonstrated the effectiveness of the proposed approach. In the second axis, we focus on the extraction of sentiments (emotions and polarity). For this, we started by building a French lexicon of sentiments and emotions that we call FEEL (French Expanded Emotions Lexicon). This lexicon is built semiautomatically by translating and expanding its English counterpart NRC EmoLex. We then compare FEEL with existing French lexicons from literature on reference benchmarks. The results show that FEEL improves the classification of French texts according to their polarities and emotions. Finally, we propose to evaluate different features, methods and resources for the classification of sentiments in French. The conducted experiments have identified useful features and methods in the classification of sentiments for different types of texts. The learned systems have been particularly efficient on reference benchmarks.
منابع مشابه
Text Analytics of Customers on Twitter: Brand Sentiments in Customer Support
Brand community interactions and online customer support have become major platforms of brand sentiment strengthening and loyalty creation. Rapid brand responses to each customer request though inbound tweets in twitter and taking proper actions to cover the needs of customers are the key elements of positive brand sentiment creation and product or service initiative management in the realm of ...
متن کاملThe French Social Media Bank: a Treebank of Noisy User Generated Content
In recent years, statistical parsers have reached high performance levels on well-edited texts. Domain adaptation techniques have improved parsing results on text genres differing from the journalistic data most parsers are trained on. However, such corpora usually comply with standard linguistic, spelling and typographic conventions. In the meantime, the emergence of Web 2.0 communication medi...
متن کاملUsing Sentiment Analysis Technique for Analyzingthai Customer Satisfaction from Social Media
With the rapidly increasing number of Thai online customer reviews available in social media and websites, sentiment analysis technique, also called opinion mining, has become an important task in the past few years. This technique aims to analyze people’s emotions, opinion, attitudes and sentiments. The classical approaches for opinion mining represents the reviews as bag-of-words as many word...
متن کاملA Novel Approach for Sentiment Analysis Using Classifiers Naive Bayes, SVM and Modified K-Means
Sentiments, evaluations, attitudes, and emotions are the subjects of study of sentiment analysis and opinion mining. The inception and rapid growth of the field coincide with those of the social media on the Web, e.g., reviews, forum discussions, blogs, micro blogs, Twitter, and social networks, because for the first time in human history, we have a huge volume of opinionated data recorded in d...
متن کاملStock Market Forecasting Techniques: Literature Survey
The goal of this paper is to study different techniques to predict stock price movement using the sentiment analysis from social media, data mining. In this paper we will find efficient method which can predict stock movement more accurately. Social media offers a powerful outlet for people’s thoughts and feelings it is an enormous ever-growing source of texts ranging from everyday observations...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017